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Fast 3-D Electromagnetic Full-Wave Inversion of
Dielectric Anisotropic Objects Based on ResU-Net

Enhanced by Variational Born Iterative Method
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Abstract— In this article, a novel artificial neural network
named residual U-Net (ResU-Net) is proposed to directly
reconstruct 3-D dielectric anisotropic objects from scattered elec-
tromagnetic field data recorded at the receiver array. ResU-Net
has the same framework as that of U-Net but the convolu-
tion kernels are replaced with residual kernels. Meanwhile,
the squeeze-and-excitation (SE) operation is added to enable
information interaction among different channels and further
improve prediction accuracy. ResU-Net is trained by thousands
of 3-D homogeneous dielectric anisotropic handwritten digits
and the corresponding synthesized scattered field data. In the
online prediction, ResU-Net can invert multiple anisotropic model
parameters of homogeneous 3-D objects instantaneously. For an
inhomogeneous object or multiple homogeneous objects, ResU-
Net provides good initial profiles which are fed into the following
variational Born iterative method (VBIM) full-wave inversion
solver. In addition, the VBIM is implemented in a restricted
domain instead of the whole 3-D inversion domain to save
computational cost. Numerical experiments show that compared
with the traditional iterative solver, such as VBIM, the proposed
ResU-Net or the hybrid method can not only achieve higher
reconstruction accuracy but also accomplish the multiparametric
3-D inversion in a much faster way.

Index Terms— Dielectric anisotropic objects, electromag-
netic (EM) full-wave inversion (FWI), residual network, U-Net,
variational Born iterative method (VBIM).

I. INTRODUCTION

ELECTROMAGNETIC (EM) full-wave inversion (FWI)
is a strict whole wavefield matching procedure that aims

at obtaining quantitative information of the unknown objects
by minimizing the mismatch function between simulated
and measured field data. Compared with the qualitative EM
imaging methods, FWI can quantitatively reconstruct multiple
model parameters of unknown objects and has the advantage
of high resolution.

The development of EM FWI can date the back to early
eighties of the last century. In the beginning, due to the limi-
tation of computer ability, only one 1-D constitutive parameter
of an inhomogeneous scatterer was reconstructed by iterative
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methods [1]. Later, the research work was extended to the
simultaneous reconstruction of both permittivity and conduc-
tivity of 1-D profiles by Habashy et al. [2]. Wang and Chew
proposed the Born iterative method (BIM) to solve the 2-D
electromagnetic nonlinear inverse scattering problem [3]. They
then also proposed the distorted BIM (DBIM) to reconstruct
2-D scatterer profiles [4] by simultaneously updating their
dielectric parameters and Green’s functions in each iteration.
BIM has another variant variational BIM (VBIM) [5] which
updates the perturbations of scatterer model parameters instead
of the parameters themselves. Therefore, VBIM has higher
inversion accuracy than BIM due to the tiny adjustments of
the model parameters in each iteration. Besides the Born-type
iterative methods, there are other FWI methods, such as
the contrast source inversion (CSI) and the subspace-based
optimization method (SOM), which have been widely applied
to the 2-D inversion. CSI is different from BIM since it has
no forward computation. Its cost function is constructed using
the summation of mismatches of the contrasts and contrast
sources [6]. In the areas of through-wall imaging [7] and
biomedical imaging [8], CSI has been successfully put into
effect. The subspace optimization method (SOM) is similar
to CSI. However, its FWI iteration is implemented in the
subspace of the induced current. Details can be found in [9].
It has been combined with the frequency hopping technique
and used to invert for 2-D anisotropic dielectric objects with
large electrical dimensions [10], [11]. Another noteworthy
FWI development branch in the past decades is the hybrid
method. For example, Ye et al. [12] proposed the SOM-DBIM
to achieve super-resolution images of 2-D biaxial anisotropic
objects under the illumination of the transverse electric (TE)
wave. In [13], the DBIM and BIM were combined to guarantee
both the convergence speed and solution resolution. In addi-
tion, both the aforementioned independent and hybrid methods
also have been applied to 3-D inversion. See the Born-type
methods for the reconstruction of 3-D isotropic objects
[14]–[16] or anisotropic objects [17]–[20], inversion of air-
borne electromagnetic data [21], [22], and imaging of human
tissues [23]–[25], and the applications of CSI and SOM-DBIM
for 3-D FWI [26]–[28].

However, these iterative methods have the defect of high
computational cost, which is especially obvious for the recon-
struction of 3-D arbitrary anisotropic objects [29]. Fortunately,
thanks to the appearance and fast evolution of machine
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learning (ML), EM FWI based on the artificial neural net-
work (ANN) can retrieve the scatterer model parameters in a
real-time fashion. Its development almost follows the same line
of traditional FWI, i.e., from low dimension to high dimension
and from a single-parameter inversion to pixel-based inversion.
Originally, the ANN is only employed to extract rather general
information about the geometric and dielectric properties of
the scatterers, such as their positions, sizes, shapes, and
piecewise constant permittivities [30], [31]. Later, researchers
proposed several 2-D pixel-based inversion methods based on
ANNs to account for spatially inhomogeneous scatterers or
multiple scatterers in the inversion domain. These methods can
be roughly categorized into four kinds [32], the direct learning
approach, the physics-assisted learning approach, the learning-
assisted objective-function approach, and other approaches.
In direct learning, the measured scattered field data are directly
converted into the scatterer model parameters. The ANN
directly learns their nonlinear relationship. Representative
research works have been presented in [33]–[35]. It has the
drawback that the input and output of the ANN have different
data types. Therefore, the ANN must learn the underlying
wave physics of EM scattering. The physics-assisted learning
approach overcomes this defect by first converting EM field
data into preliminary dielectric images of the scatterers using
approximate but fast inverse solvers, e.g., Born approxima-
tion (BA) or backpropagation (BP), and then training the
ANN using the obtained preliminary model parameters and
true scatterer parameters. As a consequence, the input and
output of the ANN have the same data type. A series of related
research results have been given in [33] and [36]–[39]. The
learning-assisted objective-function approach also combines
the ANN and the traditional inversion solver. Nevertheless,
the output of the ANN feeds the iterative inversion solver,
which further refines the scatterer model parameters [40]–[42].
Besides these three types of ANN inversion methods, there are
also other means to apply ANN in EM FWI [43]. Recently,
ANNs are also used for 3-D FWI. For example, in [44],
inhomogeneous 3-D objects embedded inside layered media
are reconstructed by the physics-assisted learning approach.
In [45], the super-resolution images of multiple 3-D objects
are directly reconstructed from the measured scattered field
data by an extreme learning machine. However, all these
works regarding 3-D inversion by ANNs are only for isotropic
objects.

In this article, for the first time, we achieve the direct recon-
struction of 3-D objects with dielectric arbitrary anisotropy by
a residual U-Net (ResU-Net). Its overall architecture is similar
to U-Net [46]. However, it incorporates residual learning
blocks to account for the gradient vanishing and exploding
problems in deep learning [47]. In addition, a squeeze-and-
excitation (SE) operation [48] is embedded inside ResU-Net
to enable information interaction among different channels and
further improve its prediction accuracy. The details of the pro-
posed ResU-Net can be found in Section II-B. Moreover, for
homogeneous anisotropic scatterers, the ResU-Net is trained in
the direct learning mode and reconstructs their dielectric pro-
files instantaneously. However, for inhomogeneous anisotropic
scatterers or multiple homogeneous anisotropic scatterers, the

Fig. 1. 3-D FWI model configuration. There are Nt transmitters and Nr
receivers placed around the inversion domain D.

VBIM solver is connected to ResU-Net to highlight the
inhomogeneity. In other words, the ANN inversion follows
the method of learning-assisted objective function.

The rest of this article is organized as follows. In Section II,
the conventional VBIM and the ResU-Net are described in
detail. In Section III, two numerical examples are used to
verify the proposed method. The first one is for homogeneous
dielectric anisotropic scatterers. The second one is for inho-
mogeneous and multiple homogeneous dielectric anisotropic
scatterers. Finally, in Section IV, the summary, conclusion,
and future work are presented.

II. METHODS

In this section, first, the traditional FWI based on VBIM is
briefly introduced. Then, the configuration of the ResU-Net
is given in detail. Finally, the hybridization of ResU-Net
and VBIM for the inversion of inhomogeneous anisotropic
scatterers is also given.

A. VBIM

Suppose the nonmagnetic dielectric arbitrary anisotropic
scatterers are embedded in the free space and transmitters and
receivers are placed surrounding them, as shown in Fig. 1. The
forward scattering is described by the state equation [19]

Einc(r) = Etot (r) − Esct(r) = ε
−1

(r)
Dtot (r)

ε0

− jω
∫

D
GEJ(r, r′) · χ(r′)Dtot(r′)dr′ (1)

where GEJ is the dyadic Green’s function in the homogeneous
free space [49] and D is the inversion domain enclosing the
scatterers. The contrast function χ is defined as

χ(r) = [ε(r) − I]ε−1
(r) (2)

where ε is the complex relative permittivity tensor. It is
computed by

ε =
⎡
⎣ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤
⎦ + 1

jωε0

⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ (3)
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Fig. 2. Architecture of the ResU-Net.

where εpq = εqp and σpq = σqp with p, q = 1, 2 and 3.
In other words, we only consider the symmetrical tensors
which are ubiquitous in nature [50]. In the forward scat-
tering computation, (1) is discretized and Dtot is expanded
by the rooftop basis functions. The coefficients are solved
by the stabilized biconjugate-gradient fast Fourier transform
(BCGS-FFT). Details can be found in [19] and will not be
repeated here.

The inverse scattering is formulated by the data equation
which is expressed as [19]

Esct (r) = jω
∫

D
GEJ(r, r′) · χ(r′)Dtot(r′)dr′ (4)

where Esct is the scattered EM field measured at the receiver
array. In the inverse computation, (4) is discretized and we
obtain a matrix-form equation in which the sensitivity matrix
is composed by the total field Etot and the DGFs [19].
The unknown contrast χ is solved by the conjugate gradi-
ent (CG) method. One should note that Etot also depends
on χ . Therefore, (4) is nonlinear. In VBIM, it is linearized
by replacing Etot in the current iteration with that obtained by
BCGS-FFT in the last iteration. For the detailed procedure of
VBIM, see [19, Sec. II]. In addition, the results in [19] also
show that the convention VBIM is rather time consuming,
which is especially obvious for the inversion of 3-D arbitrary
anisotropic objects.

B. ResU-Net

As mentioned in Section I, we combine U-Net and residual
networks to account for both the voxel-level reconstruction
and deep learning demands. The overall architecture of this
ResU-Net is shown in Fig. 2. It has the U-Net framework
and is realized in four levels. However, its major difference
with respect to U-Net is that the convolution operations in
U-Net are replaced by residual operations, which are shown
in Fig. 3. The dimensions of data blocks in each level of

ResU-Net are stamped in the lower left corner and their
channel numbers are marked near the block. The data blocks
in two different levels are connected by the downsampling or
upsampling operation, depending on the left branch (encoder)
or the right branch (decoder). The encoder is used for feature
extraction and the decoder restores the high-level semantic
features in order to build a mapping from the scattered EM
fields to the model parameters of unknown scatterers for the
voxel-level prediction. The input of the encoder with three
channels is preprocessed by a series of operations, including
the batch-normalization (BN), the activation function ELU
and a 3 × 3 × 3 convolutional (ConV) kernel. Then, the data
block with 32 channels is manipulated by three rounds of
downsampling-identity ×n to extract the main features of the
scatterer parameters. Identity ×n means identity operation
cascaded n times. In the decoder, the network structure is
similar to that in the encoder. However, upsampling is adopted
to restore the 3-D dielectric parameter images. Another notable
operation in the decoder is the concatenation which is used
to directly integrate features extracted in the encoder to the
decoder. The purpose of such an operation is to avoid feature
loss in the deep learning process. Following the concatenated
data blocks are a series of BN-ELU-ConV with the kernel
size of 1 × 1 × 1 which is used to guarantee the data block
dimension consistency. As shown in Fig. 2, the concatenating
operation in the first level is different from those in the second
and third levels since it includes a series of downsampling
operations and its overall structure is similar to an SE opera-
tion. See Fig. 3(d). Finally, in front of the output data block,
a convolution kernel with the size of 1 × 1 × 1 followed by the
ReLU activation function is used to generate 12 nonnegative
dielectric model parameters (six for permittivity tensor and six
for conductivity tensor).

The residual operations in the proposed architecture are
manifested by modified identity, downsampling, and upsam-
pling, as shown in Fig. 3. For all three operations, each
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Fig. 3. Detailed residual operations for (a) identity, (b) downsampling,
(c) upsampling, and (d) downsampling-SE in Fig. 2. (L , C) means the data
block has the dimensions of L × L × L and the channel number is C . (32, 3)
means the data block has the dimensions of 32 × 32 × 32 and the channel
number is 3.

includes three basic parts. The first part is a “bottleneck”
which is composed of three successive convolutions that
are used to reduce the number of parameters and increase
ANN depth. In addition, the pre-activation strategy, includ-
ing BN and ELU is adopted before the convolution layer
inside the “bottleneck,” which has been shown by several
numerical experiments having more accurate prediction than
other activation strategies [51]. Here, we use the activation
function ELU instead of ReLU since the ResU-Net maps
the scattered field data to scatterer dielectric parameters. The
intermediate variables may have negative values except those
in the outermost output layer. The major differences among the
three operations of identity, downsampling, and upsampling lie
in the stride sizes and channel sizes of the BN-ELU-Conv. The
first and the third convolutions in all three operations have the
same stride size 1. However, for the second convolution, its
stride size is 1 for the identity but 2 for both upsampling and
downsampling. But note the convolution in the upsampling
is actually the transposed convolution (T-Conv) instead of
the regular convolution. In addition, the channel numbers of
three convolutions of the “bottleneck” in three operations are
also set different values to accommodate the data block size
consistency in the whole ResU-Net. The second part is the
SE operation which includes a series of operations of global
pooling (GP)-FC-ReLU-FC-Sigmoid. Its results are multiplied
with the output of the first part and the purpose of such an
operation is to increase the information fusion among different
channels and further improve the prediction accuracy of the
whole ANN [48]. The third part is an adding operation that

realizes the residual computation between the input of the
“bottleneck” and the output of the SE operation. Again, the
residual operation is adopted to increase the ANN depth to
accommodate the nonlinearity and ill-posedness of the 3-D
FWI of anisotropic scatterers. In addition, the shortcuts for the
adding operations for identity, downsampling, and upsampling
are also different due to the different output data block sizes
of the SE operations.

Fig. 3(d) shows the major procedure of the
downsampling-SE which directly bridges the input and
output of the ResU-Net. Several consecutive downsampling
operations are implemented to reduce the data block size to
1 × 1 × 1 and increase the channel number to 64. Then, the
global average pooling and the FC-ReLU are taken to reduce
the channel number to 12 and map the scattered field data
to 12 dielectric arbitrary anisotropic model parameters. They
are then directly multiplied to the U-Net output. The purpose
of downsampling-SE is to strengthen the direct inversion of
values of homogeneous model parameters and prevent their
information loss in the deep U-Net.

For 3-D EM inversion by ResU-Net, we choose the mean
square error (MSE) [52] between the ground truths and the
predicated model parameters as the loss function for training.
It is defined as

M SE = 1

N

N∑
n=1

‖ŷn − yn‖2
2 (5)

where yn and ŷn are the ground truth vector and the predicted
model parameter vector in the nth voxel, respectively. Both of
them have the dimension of 12 × 1 and contain 12 dielectric
parameters. ‖‖2 denotes the L2 norm and N is the total
number of voxels in the inversion domain. The parameters of
the 3-D ResU-Net will be adjusted in each training epoch.
The optimization method used in this work is the Adam
optimizer [53]. Because partial data are used to validate the
ResU-Net after training, the MSE defined in (5) is also suitable
for a validation error.

C. Hybridization of ResU-Net And VBIM

Due to the strong nonlinearity and ill-posedness of EM
inversion for dielectric arbitrary anisotropic scatterers, the
proposed ResU-Net cannot completely and precisely recon-
struct inhomogeneous or multiple homogeneous objects in
the voxel level. Therefore, we cascade the ResU-Net and the
conventional VBIM solver. In other words, the VBIM solver
treats the ResU-Net output as the initial profiles of the 3-D
objects and implements the iteration to further improve the
reconstruction accuracy. Another important point deserving
emphasizing here is that VBIM is implemented in a restricted
region instead of the whole inversion domain. When we obtain
the preliminary inversion results by ResU-Net, the background
region is clearly discernible although model parameters in the
scatterer voxels may be inaccurate. Therefore, we downsize the
inversion domain by removing the peripheral “background”
voxels that are two voxels away from the preliminary scatter-
ers. Here, “removing” means the background model parame-
ters in these voxels are known and will not be inverted. As a
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consequence, the computational cost of VBIM is significantly
reduced. And this will be shown in Section III-C.

III. NUMERICAL RESULTS

In this section, we first briefly introduce the training details
of the proposed ResU-Net and validate its design superi-
ority by several comparative numerical analyses. Then, two
numerical examples are given to verify the feasibility and
effectiveness of ResU-Net for the inversion of 3-D dielectric
anisotropic objects. In the first example, 12 dielectric parame-
ters of the homogeneous scatterer are directly reconstructed
from scattered EM field data. The ResU-Net realizes the
instantaneous multiparametric inversion of anisotropic objects.
In the second example, the hybrid solver of ResU-Net and
VBIM is used to reconstruct an inhomogeneous scatterer or
multiple homogeneous scatterers from scattered field data
contaminated by noise. The inversion results and compu-
tational cost are compared with those by the pure VBIM
solver. The purpose of this example is to show the practicality
of the hybrid method for the inversion of inhomogeneous
dielectric arbitrary anisotropic objects. In addition, in order
to quantitatively evaluate the reconstruction performance of
the proposed method, we use the data misfit and model
misfit defined in [54, Eqs. (16) and (17)]. The data misfit
indicates how well the measured scattered fields match the
predicted scattered fields in the iterations. The model misfit
indicates how well the reconstructed model parameters match
the true model parameters. It represents the relative error
between the ground truth and the numerical inversion result.
All the measured scattered EM field data are simulated by the
BCGS-FFT forward solver. All the numerical experiments are
performed on a workstation with an 18-cores Intel i9-10980XE
3.00 GHz CPU and 256 GB RAM. The ResU-Net is trained
on an NVIDIA GeForce RTX 3090 GPU with 24 GB memory.

A. EM Inversion Setups and ResU-Net Training Details

As shown in Fig. 1, the inversion domain D has the size of
0.64 m × 0.64 m × 0.64 m with its center locating at the origin
of the coordinate. It is discretized into 32 × 32 × 32 voxels
in the FWI. Because there are 12 anisotropic parameters to be
reconstructed in each voxel, the output data block of ResU-Net
has the dimensions of 32 × 32 × 32 and 12 channels. Totally,
32 transmitters and 32 receivers are placed in two concentric
spheres with radii of 1 and 2 m, respectively. The transmitters
are arranged in four circles with their faces parallel to the
sphere equatorial plane. In each circle, eight transmitters are
uniformly placed with an equal arc interval. The latitudes of
four circles are 18◦N, 54◦N, 18◦S, and 54◦S, respectively. The
receivers are arranged in a similar way. Note the transmitters
are assumed to be infinitesimal dipoles and their radiation
pattern is accounted for by Green’s functions. In the inversion,
we use 16 operation frequencies from 160 to 460 MHz with
an equal interval of 20 MHz which are the same as those
used in the forward computation to generate the training
samples. Because the scattered electric fields are complex
numbers and have three orthogonal components, the input
data block of ResU-Net has the dimensions of 32 × 32 × 32

Fig. 4. (a) Training and validation models of ResU-Net. (b) Convergence
curves of training and validation.

TABLE I

COMPARISONS OF THE PROPOSED RESU-NET AND THOSE DESIGNS

ACHIEVED BY REPLACING ITS CERTAIN COMPONENTS

and three channels. The first dimension is corresponding to
32 transmitters. The second dimension is corresponding to
32 receivers. The third dimension is for the combination of
16 frequencies and the real and imaginary parts of the data.
The three channels are corresponding to three orthogonal
scattered electrical field components, respectively.

As shown in Fig. 4(a), the training dataset is constructed
by ten basic 3-D numerals adapted from the MNIST [55]
which is originally used in the field of 2-D ML. We stretch
the numerals in the perpendicular direction and rotate them
by 90◦, 180◦, or 270◦, respectively, to enrich the database.
For each training sample, only one numeral appears in the
inversion domain. Although its location is random, the values
of the diagonal elements of εr are randomly set in the range
of [1.2, 2.0] and those of the nondiagonal elements distribute
between 0.1 and 0.5. The conductivity elements are assigned
random values between 1 and 5 mS/m. It should be pointed
out that the 3-D digit of each training sample is homogeneous.
The inversion inaccuracy for inhomogeneous objects caused
by the trained ResU-Net is compensated by the VBIM solver,
which will be discussed in Section III-C. Using the above
strategy, 3000 samples are randomly generated for training
and 100 are for validation. After 150 epochs of training on the
RTX 3090 GPU which costs about 50 min, the training MSE
decreases to less than 0.0004 and the validation MSE becomes
less than 0.00457. Add both of them almost keep unchanged
after the 100th epoch, as shown in Fig. 4(b). In other words,
the ResU-Net is fully trained and ready for 3-D dielectric
arbitrary anisotropic FWI.

We then validate the superiority of the design of our
ResU-Net by replacing its certain component with the con-
ventional design and comparing the number of network para-
meters and final training MSE. Note this final MSE is obtained
by repeating the training five times with random initial values
of the network parameters and taking the mean value of
five MSEs. Four numerical experiments are conducted. In the
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TABLE II

MODEL MISFITS OF THE RECONSTRUCTED ANISOTROPIC DIELECTRIC PARAMETERS BY RESU-NET IN TEST #1 AND TEST #2

Fig. 5. 3-D shapes of the objects in (a) Test #1 and (b) Test #2.

first experiment, the pre-activation of BN-ELU in the three
operations including identity, downsampling, and upsampling
(see Fig. 3) is replaced by the conventional postactivation.
In the second experiment, the SEs in all three operations
are removed. In the third and fourth experiments, the overall
architecture of the ResU-Net is modified having three or
five levels. Table I shows comparisons of MSE values and
the number of network parameters. We can see that MSE
increases from 0.004784 to 0.005788 if the pre-activation
strategy is replaced by the postactivation strategy although
the number of network parameters has no obvious change.
If we remove the SEs in the three operations, the MSE
increases more than 21%, which will without question lead
to the degeneration of the ResU-Net inversion performance.
For the comparisons for network levels, it is obvious that
the ResU-Net significantly deteriorates if we only use three
levels although the network parameters are also significantly
reduced. However, if we keep increasing the level number, i.e.,
increasing the network depth, its performance actually has no
obvious improvement. However, its capacity becomes much
larger. All those comparisons indicate the current design of
the ResU-Net is the most appropriate.

B. Case 1: Single Homogeneous Anisotropic Scatterer

In this case, we implement two tests to validate the perfor-
mance of the proposed ResU-Net. In both tests, the objects
are homogeneous and their 3-D shapes are shown in Fig. 5.
The object in Test #1 is the homogeneous digit “4.” Although
its basic shape is similar to those of training samples, its
thickness, location, and 12 anisotropic dielectric parameters
are distinct. For convenience, we only select the 2-D xy cross
section and show the results in Fig. 6. In Test #2, we use
ResU-Net to reconstruct the 3-D homogeneous anisotropic
letter “S” whose shape and parameters are far from those in
the training dataset. Similarly, the xy cross sections of the
inversion results are shown in Fig. 7. The model misfits of
the reconstructed dielectric parameters in both tests are listed
in Table II. One should note that Test #1 is used to validate

the inversion performance of the proposed ResU-Net, while
Test #2 is used to validate its generalization ability.

By combining the graphical results shown in Figs. 6 and 7
and the model misfit values listed in Table II, we made the
following three observations: 1) the prediction of the diagonal
elements of the relative permittivity tensor is obviously more
accurate than that of the nondiagonal elements and all the ele-
ments in the conductivity tensor. This is manifested by both the
reconstructed dielectric profiles and model misfit values. The
different prediction accuracy is due to the fact that the diagonal
elements of the relative permittivity tensor are larger than
the nondiagonal elements and the conductivity values. As a
result, the trained ResU-Net is more sensitive to the diagonal
elements of the relative permittivity tensor in the full-wave
inversion. In addition, one should note that there is another
significant reason which leads to the large model misfits of the
nondiagonal elements of the relative permittivity tensor and
conductivity values in all anisotropic tensor elements. Their
values of the background medium are zero. Therefore, the
denominators in the model misfit computation are rather small
(see (16) in [54]), which causes large model misfit values.
2) The prediction accuracy in Test #2 is lower than that in Test
#1. This can be easily observed by comparing the similarities
of the reconstructed dielectric profiles and ground truths in
Figs. 6 and 7 and the model misfit discrepancies listed in
Table II. Such a different inversion accuracy is expected. The
digit “4” is similar to the training samples. The letter “S” is out
of the range of the training dataset. The trained ResU-Net is
more adaptive to the 3-D object similar to the training samples.
3) The mean model misfit of the diagonal elements of the
relative permittivity tensor is 3.48% for the digit “4” and 4.7%
for the letter “S.” The proposed ResU-Net has good multiple
parameter inversion accuracies and generalization ability for
a single 3-D homogeneous dielectric arbitrary anisotropic
object. This is also proved by the inverted multiple dielectric
parameters shown in Figs. 6 and 7.

C. Case 2: Single Inhomogeneous Anisotropic Scatterer or
Multiple Homogeneous Anisotropic Scatterers

We then test the trained ResU-Net using an inhomogeneous
anisotropic object and multiple homogeneous anisotropic
objects although they never show up in the training dataset.
In Test #3, the 3-D object is the inhomogeneous letter “C” and
there are two homogeneous cuboids presented in the inversion
domain in Test #4. Their 3-D shapes are shown in Fig. 8.

For Test #3, the ground truths of the object dielectric profiles
and the reconstructed permittivity and conductivity profiles
by ResU-Net are shown in the first and second columns of
Figs. 9 and 10, respectively. We can see that the ResU-Net
can only recover the object shape. It fails to invert the
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Fig. 6. Test #1: the inversion results of the homogeneous digital “4” by ResU-Net and the ground truths. The first and the third rows display the ground truths
of anisotropic permittivity and conductivity. The second and the fourth rows display the reconstructed anisotropic profiles of permittivity and conductivity.

Fig. 7. Test #2: the inversion results of the homogeneous letter “S” by ResU-Net and the ground truths. The first and the third rows display the ground truths
of anisotropic permittivity and conductivity. The second and the fourth rows display the reconstructed anisotropic profiles of permittivity and conductivity.

inhomogeneous dielectric parameter distribution. Therefore,
we employ the traditional VBIM to further refine the dielec-
tric profiles. Specifically speaking, we compress the FWI

computational domain and let it surround the reconstructed
shape by ResU-Net. Then, VBIM is implemented in the down-
sized inversion domain and starts from the model parameters
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Fig. 8. 3-D shapes of the objects in (a) Test #3 and (b) Test #4.

Fig. 9. Test #3: the reconstructed permittivity profiles of the inhomogeneous
letter “C” and the ground truths. The first column displays the ground truths.
The second column displays the inversion results by ResU-Net. The third
column displays the refined inhomogeneous dielectric profiles by VBIM. The
fourth column displays the inversion results by pure VBIM.

obtained by ResU-Net to reduce the computational cost and
increase the inversion accuracy. By comparing the second
columns and the third columns in Figs. 9 and 10, we can
see that the inhomogeneous dielectric parameter distribution
missed by ResU-Net is successfully recovered by VBIM.
By comparing the third and fourth columns, we can see that
the hybrid method ResU-Net-VBIM has much higher inversion
accuracy than the pure VBIM. In addition, the hybrid method
also has a lower computational cost than the pure VBIM,
which is shown in Fig. 13(a). We can see that the hybrid
method and the pure VBIM, respectively, take nine steps and
eight steps to converge. The final data misfit of the hybrid

Fig. 10. Test #3: the reconstructed conductivity profiles of the inhomogeneous
letter “C” and the ground truths. The first column displays the ground truths.
The second column displays the inversion results by ResU-Net. The third
column displays the refined inhomogeneous dielectric profiles by VBIM. The
fourth column displays the inversion results by pure VBIM.

TABLE III

COMPARISONS OF THE CPU TIME AND MEMORY COST OF
RESU-NET-VBIM AND PURE VBIM IN TWO TESTS

method ResU-Net-VBIM becomes less than 0.001 while that
of the pure VBIM keeps unchanged when it approaches
0.0077 in the eighth step. However, because the inversion
domain of the hybrid method only contains 3933 voxels while
that of the pure VBIM contains 32 768 voxels, each iteration of
the hybrid method takes around 7.7 min while that of the pure
VBIM takes around 110 min. The comparisons of memory
cost and CPU time for two methods are given in Table III.

For Test #4, we use two homogeneous cuboids, and the
recorded scattered electric fields are contaminated by 30 dB
white Gaussian noise, which leads to approximately 3.2%
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Fig. 11. Test #4: the reconstructed permittivity profiles of two homogeneous
cuboids and the ground truths. The first column displays the ground truths.
The second column displays the inversion results by ResU-Net. The third
column displays the refined dielectric profiles by VBIM. The fourth column
displays the inversion results by pure VBIM.

errors of the data. Here, the noise level is defined according
to the signal-to-noise ratio (SNR) of power. The purpose of
this test is to verify the adaptability of the proposed ResU-Net
to noise data and the simultaneous reconstruction of multiple
anisotropic objects. As shown in Figs. 11 and 12, the ground
truths of the object dielectric profiles and the reconstructed
permittivity and conductivity profiles by ResU-Net are dis-
played in the first and second columns. Obviously, ResU-Net
cannot distinguish the different dielectric parameters of two
objects although their shapes and locations are effectively
reconstructed. Fortunately, the following VBIM solver can
compensate for this defect. As shown in the third column
of Figs. 11 and 12, not only the difference of the dielectric
parameters between two cuboids is recovered by VBIM but
also their absolute values are successfully inverted. We also
compared the inversion accuracy and the computational cost
of the hybrid method of ResU-Net-VBIM with the pure VBIM
for the inversion of two cuboids when the field data are
contaminated by noise. The inversion results of pure VBIM are
shown in the fourth column of Figs. 11 and 12. The compari-
son of the convergence curves is shown in Fig. 13(b). We can
see that the pure VBIM can only invert for the approximate
locations of two cuboids. The obtained anisotropic dielectric
parameters are far from the ground truths. Meanwhile, the
inverted shapes are also severely distorted. The hybrid method

Fig. 12. Test #4: the reconstructed conductivity profiles of two homogeneous
cuboids and the ground truths. The first column displays the ground truths.
The second column displays the inversion results by ResU-Net. The third
column displays the refined dielectric profiles by VBIM. The fourth column
displays the inversion results by pure VBIM.

Fig. 13. Convergence curves of VBIM iterations in (a) Test #3 and
(b) Test #4.

takes three iterations while the pure VBIM takes four itera-
tions to converge to the noise level. However, because there
are only 8526 voxels in the compressed inversion domain
of ResU-Net-VBIM, it only costs 50 min to complete the
inversion while the pure VBIM costs 400 min. For detailed
memory cost and CPU time for two methods, readers can refer
to Table III. The above-mentioned inversion results indicate
that the trained ResU-Net can only reconstruct homogeneous
anisotropic parameter distribution for inhomogeneous objects
or multiple homogeneous objects. But the object shapes and
locations are correctly obtained. These initial results are fed
into the following VBIM solver to reconstruct the inhomoge-
neous dielectric parameters with a low computational cost.
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IV. CONCLUSION

In this article, a tailored ANN having the overall U-Net
framework with its convolutional kernels replaced with resid-
ual kernels is proposed to perform the multiparametric FWI of
3-D dielectric arbitrary anisotropic objects. We adopt the resid-
ual operation to circumvent gradient vanishing and exploding
issues in the deep-learning ANN design and thus account
for the nonlinearity and underdetermination of voxel-based
3-D anisotropic inversion. Meanwhile, we also add the SE
operations to enhance the prediction accuracy by increasing
the information interactions among different channels.

For homogeneous 3-D objects, the trained ResU-Net can
simultaneously reconstruct 12 anisotropic parameters with low
errors in an instantaneous way, which is shown by Test #1 and
Test #2. In other words, the ResU-Net performs effectively in
the direct learning mode for the inversion of homogeneous 3-D
objects. By contrast, the other two numerical tests in this work
indicate that ResU-Net can only accomplish the multiparamet-
ric 3-D inhomogeneous anisotropic inversion in the learning-
assisted objective-function mode. In other words, ResU-Net
only provides the approximate homogeneous 3-D dielectric
profiles of the objects in a real-time fashion. The VBIM solver
following ResU-Net further improves the inversion accuracy
and recovers the inhomogeneity by minimizing the traditional
objective function in an iterative way. Test #3 and Test #4 in
this work show that compared with the pure VBIM, the hybrid
ResU-Net-VBIM can achieve both higher inversion accuracy
and lower computational costs. In addition, it also has a certain
anti-noise ability.

In the next work, we will try to add some known physics
or prior information of EM inverse scattering by anisotropic
scatterers into the ANN to reduce the network capacity and
training cost. For example, Green’s functions in the integral
equation are known and it is unnecessary for the ANN to
learn it. An independent layer in the ANN can incorpo-
rate Green’s functions in order to reduce its training cost.
Because 12 dielectric parameters share the same scatterer
shape, an extra constraint can be added to the 12 channels
in the ANN to force the reconstructed model parameters to
have the same spatial distribution. Another interesting research
topic is to consider the effects of the radiation pattern of real
antennas, such as a horn or the Vivaldi, on the inversion results.
However, these ideas will be left as future works.
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